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1 Abstract
Strong stability preserving (SSP) high order time discretizations were developed [6] to ensure non-
linear stability properties necessary in the numerical solution of hyperbolic partial differential equa-
tions with discontinuous solutions. SSP methods preserve the strong stability properties – in any
norm, seminorm or convex functional – of the spatial discretization coupled with first order Euler
time stepping, when the timestep is suitably restricted.

The major accomplishment of the current research was to overcome the time-stepping con-
straints and the order barriers on explicit and implicit SSP methods. This was attained through
the study of multi-step multistage methods, multi-derivative methods, methods of variable linear
and nonlinear orders, and methods which include downwinding. The results of this work include
four families of new SSP methods which break order barriers and time-step bounds of previously
known methods.

The first family of methods considered incorporates implicit and explicit multistep multistage
methods. For implicit methods of this class, we found that while methods of order higher than six
can be found, the time-step barrier cannot be overcome. This means that the maximal effective
strong stability coefficient (i.e. the scaling of the forward Euler timestep divided by the number of
stages) cannot exceed two. This restrictive bound makes this implicit family not efficient for use in
applications. However, explicit methods of this class were found, through an optimization code we
developed, of up to five steps and ten stages and of order up to ten. These methods were tested on
several applications and their strong stability properties verified.

The second family of SSP methods considered were explicit Runge–Kutta methods with linear
order up to twelve and nonlinear orders up to the optimal SSP order of four. The optimal methods of
nonlinear order three have identical strong stability coefficients to the corresponding linear methods.
These methods have strong stability coefficients that approach those of the linear methods as the
number of stages and the linear order is increased. These methods are efficient for use with problems
where the SSP properties and a high linear order are required, as the increased nonlinear order
does not reduce the allowable time-step significantly if at all.

The third family of SSP methods studied involves the use of multiple stages and multiple
derivatives. Sufficient conditions for strong stability preservation for multistage two-derivative
methods were determined and an optimization problem formulated. This enabled the discovery
of optimal explicit SSP multistage two-derivative methods of up to order five, thus breaking the
SSP order barrier for explicit SSP Runge–Kutta methods. Numerical tests showed the sharpness
of the SSP condition in many cases, and demonstrated the need for SSP time-stepping methods
in simulations where the spatial discretization is specially designed to satisfy certain nonlinear
stability properties.

The fourth family of SSP methods developed includes the use of a downwinding term. This term
approximates the same spatial derivatives as the original operator, but satisfies the desired strong
stability property when solved backward in time. The addition of downwind terms has allowed
methods that exceed the time-step restriction typically seen for implicit Runge–Kutta methods.
This work is continuing and is expected to yield both implicit and explicit methods that break the
order barrier associated with SSP methods.

1Mathematics Department, University of Massachusetts Dartmouth
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2 Major Accomplishments:
1. Optimal implicit and explicit SSP k-step Runge–Kutta methods: Motivation: With-

out the use of downwinding, explicit SSP Runge-Kutta methods are limited to fourth order
and implicit SSP Runge-Kutta methods are limited to sixth order. SSP multi-step methods
do not suffer from this order barrier, but have very restrictive SSP coefficients. Efficient
explicit SSP methods of order greater than four are frequently desirable, particularly when
dealing with high order spatial discretizations. General linear methods, which have multi-
ple steps and multiple stages have the potential to combine the properties of multistep and
Runge–Kutta methods, and so provide an advantage over these methods by allowing a larger
step-size [3]. We have shown [2] that explicit general linear methods have a bound on the
SSP coefficient which is equal to the number of stages. Even considering this bound, explicit
general linear methods may be found that have order p > 4 and larger SSP coefficient than
the multistep methods.

Multistep Runge-Kutta methods are a straightforward generalization of Runge-Kutta and
linear multistep methods, and take the form

yni =
∑k

j=1 diju
n+1−j +∆t

∑s
j=1 aijf(y

n
j ), 1 ≤ i ≤ s,

un+1 =
∑k

j=1 θju
n+1−j +∆t

∑s
j=1 bjf(y

n
j ).

Here the values un denote solution values at the times t = n∆t, while the values ynj are
intermediate stages used to compute the next solution value. We will also consider a simple
generalization of these methods, based on the following reasoning. For some methods, it may
happen that the row i of A is identically zero and row i of D is (1, 0, . . . , 0), so that yn1 = un.
Then the method involves f(un), and at any step we will have computed already f(un+1−j)
for j = 1, . . . , k, so these values may as well be used in computing the next step. This leads
to methods of the form

yn1 = un,

yni =
k
∑

j=1

diju
n+1−j +∆t

k
∑

j=2

âijf(u
n+1−j) + ∆t

s
∑

j=1

aijf(y
n
j ), 2 ≤ i ≤ s,

un+1 =
k
∑

j=1

θju
n+1−j +∆t

k
∑

j=2

b̂jf(u
n+1−j) + ∆t

s
∑

j=1

bjf(y
n
j ).

This form is more suitable for finding explicit methods. In the past [4], we developed a
MATLAB optimization code and found explicit SSP two-step Runge–Kutta methods of the
form (2.1). In recent work, we found methods of up to five steps and ten stages and up to
tenth order. We tested these methods on a variety of problems.

The methods can be downloaded from our website http://sspsite.org/msrk.html. The
paper has been submitted for publication and can be downloaded from http://arxiv.org/

abs/1307.8058.

2. Optimal explicit SSP Runge–Kutta methods with high linear order and optimal

nonlinear order: The search for high order strong stability time-stepping methods with
large allowable strong stability coefficient has shown that explicit SSP Runge–Kutta methods
exist only up to fourth order [1]. However, if we restrict ourselves to solving only linear
autonomous problems, the order conditions simplify and this order barrier is lifted: explicit
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SSP Runge–Kutta methods of any linear order exist. These methods reduce to second order
when applied to nonlinear problems.

Under this grant, we developed an optimization code to search for explicit SSP Runge–Kutta
methods with large allowable time-step, that feature high linear order and simultaneously
have the optimal fourth order nonlinear order. A MATLAB code (based on [5]) was used for
finding methods with maximal SSP coefficient among those with a given linear and nonlinear
order and number of stages. Optimal methods of up to twelve stages and linear order twelve,
and nonlinear order four were found. The optimal methods of nonlinear order three have
identical strong stability coefficients to the corresponding linear methods, These methods
have strong stability coefficients that approach those of the linear methods as the number
of stages and the linear order is increased. This work shows that when a high linear order
method is desired, it may be still be worthwhile to use methods with higher nonlinear order.

This work has been accepted for publication in Mathematics of Computation and is available
for download on Arxiv at http://arxiv.org/abs/1403.6519.

3. SSP analysis of multistep multiderivative time stepping methods

With the increasing popularity of multi-stage multiderivative methods for use as time-stepping
methods for hyperbolic problems [7, 8], the question of their strong stability properties needs
to be addressed. We developed sufficient conditions for strong stability preservation for mul-
tistage two-derivative methods: We assumed that, in addition to the forward Euler condition,
the spatial discretization of interest satisfies a second derivative condition. With these as-
sumptions in mind, we formulated an optimization problem which enabled us to find optimal
explicit SSP multistage two-derivative methods of up to order five, thus breaking the SSP
order barrier for explicit SSP Runge–Kutta methods. In numerical tests we showed the sharp-
ness of the SSP condition in many cases, and demonstrated the need for SSP time-stepping
methods in simulations where the spatial discretization is specially designed to satisfy certain
nonlinear stability properties. Future work will involve building SSP multiderivative meth-
ods while assuming different base conditions and with higher derivatives. Additional work
will involve developing new spatial discretizations suited for use with SSP multiderivative
time stepping methods. These methods will be based on WENO or discontinuous Galerkin
methods and will satisfy pseudo-TVD and similar properties for systems of equations.

The paper describing this work, in collaboration with Andrew Chrislieb and David Seal, was
submitted for publication and is available on Arxiv at http://arxiv.org/abs/1504.07599.

4. Implicit Runge–Kutta time-stepping with downwinding To more easily analyze SSP
methods, we rewrite Runge–Kutta methods in the form:

u(0) = un,

u(i) =
i−1
∑

k=0

(

αi,ku
(k) +∆tβi,kF (u(k))

)

, αi,k ≥ 0, i = 1, ...,m (2.1) ?1.8?

un+1 = u(m).

Explicit SSP Runge-Kutta methods are known to be limited to fourth order and implicit SSP
Runge-Kutta methods are limited to sixth order. However, if we allow the use of negative co-
efficients βi,k it is possible to overcome this order barrier. The presence of negative coefficients
requires the use of a modified spatial discretization for these instances. When βi,k is negative,
βi,kF (u(k)) is replaced by βi,kF̃ (u(k)), where F̃ approximates the same spatial derivative(s) as
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F , but the strong stability property holds for the first order Euler scheme, solved backward
in time. Numerically, the only difference is the change of the upwind direction.

A further problem is the bounds on the SSP coefficient of C ≤ m for explicit methods and of
C ≤ 2m for implicit methods. Both the order barrier and the SSP coefficient bound may be
alleviated by the use of SSP methods with downwinding. We have created an optimization
code in MATLAB which seeks implicit methods with downwinding with a large allowable SSP
coefficient and found methods of up to order p = 5 which have C >> 2m. Explicit methods
still have SSP coefficients limited by the bound, however we can find methods of higher order
than four. This is an ongoing area of research and although we have made significant progress
we expect to have more results over the course of the next grant.

5. GPU optimized time-stepping modules: We are currently creating GPU-optimized mod-
ules for the developed time-stepping methods, which include CPU implementation of the
spatial discretization coupled with GPU implementation of the time-stepping method.

3 Other Information

Dissemination We continue to update our SSP RK web-site to disseminate the results of
the study. This site serves as an online catalog of all the methods studied, noting which are most
successful, and commenting on the theoretical properties of each, and on which performed best
with which spatial approximation.

In February 2013, I organized two minisymposium sessions on SSP methods at the SIAM CSE
meeting in Boston, and at the ICOSAHOM 2014 meeting in Utah I gave the opening plenary lecture
on SSP methods and organized a multi-session minisymposium on Aspects of Time-Stepping which
included presentations on some of this work. I presented the new work on multiderivative methods
as part of Antony Jameson’s 80th birthday symposium at Stanford University in November 2014.
Zachary Grant presented both the Linear/Non-linear SSP Runge–Kutta methods and the multi-
stage multiderivative work at the SIAM CSE 2015 meeting in Utah and at the RPI graduate student
event in April 2014. He also presented the multistage multiderivative work at WPI and Tufts as
part of the SIAM student chapter seminars.

Personnel Supported During Duration of Grant
Sigal Gottlieb, Professor of Mathematics, UMass Dartmouth.
Daniel Higgs, Graduate Student, UMass Dartmouth.
Zachary Grant, Undergraduate/graduate Student, UMass Dartmouth.
Sidafa Conde, Undergraduate/graduate Student, UMass Dartmouth.
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